Behavior analysis of machines and system air hemispherical spindles using finite element modeling
نویسندگان
چکیده
Purpose – The spindle behavior of machines and systems depends largely on the choice and design quality of the mechanical components used for the displacement between different parts. As far as very high technology is concerned, air bearings are suitable, for instance, for machining a telescope mirror or for systems used in medical applications that require a micro and nanometric resolution in displacement. Therefore, air bearings play a crucial role in ensuring spindle stability in machines and systems. The static and dynamic behavior of air spindles is dependent on several parameters, such as external load, dimensions, supply pressure, manufacturing capability and fluid properties. Design/methodology/approach – This paper presents a methodology for the calculation and analysis of the stability and reliability of machine and system spindles supported by air hemispherical bearings. The static and dynamic characteristics of air spindles are calculated using the finite element method (FEM). The stochastic Response Surface Method (SRSM) is used for the approximation of the performance function, and the reliability is assessed by Monte Carlo Simulation (MCS) and the First Order Reliability Method (FORM). Findings – The static and dynamic characteristics of air spindles are calculated using the finite element method (FEM). Stochastic Response Surface Method (SRSM) is used for the approximation of the performance function, and the reliability is assessed by Monte Carlo Simulation (MCS) and First Order Reliability Method (FORM). Originality/value – The article presents an original approach for the behavior analysis of machines and systems spindles supported by hemispherical fluid bearings. The methodology based on the finite element method and the principle of structural reliability, allows studying the influence of physical and geometrical parameters on the static and dynamic characteristics and the failure probability of a spindle. Thus, the optimum behavior of a spindle can be predicted for different configurations of a bearing design taking into account the reliability evaluation.
منابع مشابه
Experimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application
In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...
متن کاملMeso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method
One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...
متن کاملParametric study of nonlinear buckling capacity of short cylinders with Hemispherical heads under hydrostatic pressure
This study investigates the buckling behavior of short cylindrical shells with hemi-spherical heads subjected to hydrostatic pressure. It is assumed that the length of the cylindrical part is smaller than or equal to its diameter while its material may be dif-ferent from that of hemispherical heads. Finite element analysis was used to seek out the effect of geometric parameters such as thicknes...
متن کامل3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow
The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...
متن کاملEvaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013